Sara Ballouz
Sara Ballouz
Home
Posts
Projects
Publications
Contact
Posts
How-to: download data from SRA
References: https://www.michaelgerth.net/news--blog/how-to-efficiently-bulk-download-ngs-data-from-sequence-read-databases Using SRA toolkit https://ncbi.github.io/sra-tools/install_config.html Install sratoolkit wget "http://ftp-trace.ncbi.nlm.nih.gov/sra/sdk/current/sratoolkit.current-centos_linux64.tar.gz" tar -xzf sratoolkit.current-centos_linux64.tar.gz Configure ./vdb-config -i Follow the instructions to change the download directory. The tools will download the data into /ncbi/public/sra/, wherever you have it set.
Last updated on May 19, 2023
1 min read
How-to: perform gene set enrichment analysis
Set up environment library(EGAD) gene_set_enrichment <- function(genes, genes.labels, voc){ genes.names = rownames(genes.labels) labels.names = colnames(genes.labels) genes.counts = rowSums(genes.labels) labels.counts = colSums(genes.labels) # p m = match ( genes, genes.names ) filt.
Last updated on May 19, 2023
1 min read
How-to: run a differential expression analysis
Running DESeq2 For comprehensive tutorials, see here: Running edgeR Running basic DE calc_DE <- function(X, f.a, filt, group){ X = X[f.a,filt] group = group[filt] if( sum(group==1) < 2 ) { m.
Last updated on May 19, 2023
1 min read
How-to: run AuPairWise to assess biological replicability
RNA-sequencing is a popular means to detect the expression levels of genes. However, quality control remains challenging, requiring both extreme measures and rules which are set in stone from extensive previous analysis.
Last updated on May 19, 2023
3 min read
How-to: run EGAD
EGAD is an R package for the functional analysis of gene networks. It contains a series of tools to calculate functional properties in networks based on the guilt-by-association principle. The functions implemented here can be applied to gene networks constructed from a range of data types (e.
Last updated on May 19, 2023
1 min read
How-to: test for cell type replicability using MetaNeighbor
Install MetaNeighbor In R: if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager") BiocManager::install("MetaNeighbor") library(MetaNeighbor) Load data load("/data/XCGD/SCGC-GILL-JG-03_2/mono_seo.Rdata") seo1 = seo load("/data/XCGD/SCGC-GILL-JG-04_2/mono_seo.Rdata") seo2 = seo Merge data sets colData1 = seo1@colData colData2 = seo2@colData colData = rbind(colData1, colData2) data1 = seo1@assays[[1]] data2 = seo2@assays[[1]] m = match( rownames(data1), rownames(data2)) f.
Last updated on May 19, 2023
1 min read
«
Cite
×